If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x+13/2=0
We multiply all the terms by the denominator
x^2*2+6x*2+13=0
Wy multiply elements
2x^2+12x+13=0
a = 2; b = 12; c = +13;
Δ = b2-4ac
Δ = 122-4·2·13
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{10}}{2*2}=\frac{-12-2\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{10}}{2*2}=\frac{-12+2\sqrt{10}}{4} $
| 1x+5=-3 | | 5e+9=49 | | 8(x+14)=88 | | 1(x+3)+6=4 | | 4(x-9)-6=-6 | | 2x²+4x-9=0 | | 10(x-5)-14=-44 | | 3(x+8)+17=23 | | 3(x+13)+14=59 | | 3(x+9)+13=13 | | 4x-14+x+85=185 | | 1(x+17)=8 | | 4x+3x=3x+10 | | 5(x+2)+14=39 | | 1(x+14)-7=7 | | 5(x+4)+12=-3 | | 3–x=6·x–39. | | 1(x+8)-18=0 | | 6(x+8)+7=97 | | ?x-8=40 | | 5(x+12)=50 | | 10(x+13)=70 | | 8(x+11)+14=126 | | 4(x+7)+12=48 | | 17=10–2x | | 6(x-16)-8=-56 | | 5(x+7)+13=78 | | 1x+16=7 | | 5(x+12)=105 | | 6(x+2)+18=-6 | | 3(x+11)=27 | | 7(x+16)+13=118 |